How the Physics of Football Works

The Tackling Process

Coaches often tell their players to tackle a runner low. In this way, the runner's feet will be rotated in the air in the direction of the tackle. Let's look at this closely:

Imagine that the runner's mass is concentrated in a point called the center of mass. In men, the center of mass is located at or slightly above the navel; women tend to have their center of mass below their navels, closer to their hips. All bodies will rotate easiest about their center of mass. So, if a force is applied on either side of the center of mass, the object will rotate. This rotational force is called torque, and is the product of the amount of force applied and the distance from the center of mass at which the force applied. Because torque is a product, the same torque can be applied to an object at different distances from the center of mass by changing the amount of force applied: Less force is required farther out from the center of mass than closer in. So, by tackling a runner low -- far from the center of mass -- it takes less force to tackle him than if he were tackled high. Furthermore, if a runner is hit exactly at his center of mass, he will not rotate, but instead will be driven in the direction of the tackle.

A lineman crouches low so that his center of mass is closer to the ground. This makes it hard for an opposing player to move him.

Similarly, coaches often advise linemen to stay low. This brings their center of mass closer to the ground, so an opposing player, no matter how low he goes, can only contact them near their center of mass. This makes it difficult for an opposing player to move them, as they will not rotate upon contact. This technique is critical for a defensive lineman in defending his own goal in the "red" zone, the last 10 yards before the goal line.

We have only touched on some of the applications of physics as they relate to football. Remember, this knowledge appears to be instinctive; Most often, players and coaches don't consciously translate the mechanics of physics into their playing of the sport. But by making that translation, we can understand and appreciate even more just how amazing some of the physical feats on the football field really are. Also, applying physics to football leads to better and safer equipment, affects the rules of the sport, improves athletic performance, and enhances our connection to the game.

For more information on football physics and related topics, check out the links on the next page.

More to Explore